Cosmic neutrino decoupling and its observable imprints: insights from entropic-dual transport

Author:

Bond J. RichardORCID,Fuller George M.,Grohs EvanORCID,Meyers JoelORCID,Wilson Matthew JamesORCID

Abstract

Abstract Very different processes characterize the decoupling of neutrinos to form the cosmic neutrino background (CνB) and the much later decoupling of photons from thermal equilibrium to form the cosmic microwave background (CMB). The CνB emerges from the fuzzy, energy-dependent neutrinosphere and encodes the physics operating in the early universe in the temperature range T ∼ 10 MeV to T ∼ 10 keV. This is the epoch where beyond Standard Model (BSM) physics, especially in the neutrino sector, may be influential in setting the light element abundances, the necessarily distorted fossil neutrino energy spectra, and other light particle energy density contributions. Here we use techniques honed in extensive CMB studies to analyze the CνB as calculated in detailed neutrino energy transport and nuclear reaction simulations of the protracted weak decoupling and primordial nucleosynthesis epochs. Our moment method, relative entropy, and differential visibility approach can leverage future high precision CMB and light element primordial abundance measurements to provide new insights into the CνB and any BSM physics it encodes. We demonstrate that the evolution of the energy spectrum of the CνB throughout the weak decoupling epoch is accurately captured in the Standard Model by only three parameters per species, a non-trivial conclusion given the deviation from thermal equilibrium and the impact of the decrease of electron-positron pairs. Furthermore, we can interpret each of the three parameters as physical characteristics of a non-equilibrium system. Though the treatment presented here makes some simplifying assumptions including ignoring neutrino flavor oscillations, the success of our compact description within the Standard Model motivates its use also in BSM scenarios. We further demonstrate how observations of primordial light element abundances can be used to place constraints on the CνB energy spectrum, deriving response functions that can be applied for general deviations from a thermal spectrum. Combined with the description of those deviations that we develop here, our methods provide a convenient and powerful framework to constrain the impact of BSM physics on the CνB.

Publisher

IOP Publishing

Reference125 articles.

1. Snowmass2021 Theory Frontier White Paper: Data-Driven Cosmology;Amin,2022

2. Synergy between cosmological and laboratory searches in neutrino physics;Gerbino;Phys. Dark Univ.,2023

3. Snowmass2021 Cosmic Frontier: Cosmic Microwave Background Measurements White Paper;Chang,2022

4. The Physics of Light Relics;Dvorkin,2022

5. Snowmass Neutrino Frontier: DUNE Physics Summary;DUNE Collaboration,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3