Abstract
AbstractThe mitotic spindle is a highly dynamic bipolar structure that emerges from the self-organization of microtubules, molecular motors and other proteins. Sustained motor-driven poleward flows of dynamic microtubules play a key role in the bipolar organization of spindles. However, it is not understood how the local activity of motor proteins generates these large-scale coherent poleward flows. Here we show that a gelation transition enables long-range microtubule transport causing the spindles to self-organize into two oppositely polarized microtubule gels. Laser ablation experiments reveal that local active stresses generated at the spindle midplane propagate through the structure, thereby driving global coherent microtubule flows. Simulations show that microtubule gels undergoing rapid turnover can exhibit long stress relaxation times, in agreement with the long-range flows observed in experiments. Finally, our model predicts that in the presence of branching microtubule nucleation, either disrupting such flows or decreasing the network connectivity can lead to a microtubule polarity reversal in spindles. We experimentally confirm this inversion of polarity by abolishing the microtubule transport in spindles. Overall, we uncover a connection between spindle rheology and architecture in spindle self-organization.
Funder
European Molecular Biology Organization
Human Frontier Science Program
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献