Abstract
AbstractThe coupling between superconductors and oscillation cycles of light pulses, i.e., lightwave engineering, is an emerging control concept for superconducting quantum electronics. Although progress has been made towards terahertz-driven superconductivity and supercurrents, the interactions able to drive non-equilibrium pairing are still poorly understood, partially due to the lack of measurements of high-order correlation functions. In particular, the sensing of exotic collective modes that would uniquely characterize light-driven superconducting coherence, in a way analogous to the Meissner effect, is very challenging but much needed. Here we report the discovery of parametrically driven superconductivity by light-induced order-parameter collective oscillations in iron-based superconductors. The time-periodic relative phase dynamics between the coupled electron and hole bands drives the transition to a distinct parametric superconducting state out-of-equalibrium. This light-induced emergent coherence is characterized by a unique phase–amplitude collective mode with Floquet-like sidebands at twice the Higgs frequency. We measure non-perturbative, high-order correlations of this parametrically driven superconductivity by separating the terahertz-frequency multidimensional coherent spectra into pump–probe, Higgs mode and bi-Higgs frequency sideband peaks. We find that the higher-order bi-Higgs sidebands dominate above the critical field, which indicates the breakdown of susceptibility perturbative expansion in this parametric quantum matter.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Reference50 articles.
1. Vaswani, C. et al. Light-driven Raman coherence as a nonthermal route to ultrafast topology switching in a Dirac semimetal. Phys. Rev. X 10, 021013 (2020).
2. Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).
3. Kemper, A. F., Sentef, M. A., Moritz, B., Freericks, J. K. & Devereaux, T. P. Direct observation of Higgs mode oscillations in the pump-probe photoemission spectra of electron-phonon mediated superconductors. Phys. Rev. B 92, 224517 (2015).
4. Knap, M., Babadi, M., Refael, G., Martin, I. & Demler, E. Dynamical Cooper pairing in nonequilibrium electron-phonon systems. Phys. Rev. B 94, 214504 (2016).
5. Sentef, M. A., Kemper, A. F., Georges, A. & Kollath, C. Theory of light-enhanced phonon-mediated superconductivity. Phys. Rev. B 93, 144506 (2015).
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献