Scaling and intermittency in turbulent flows of elastoviscoplastic fluids

Author:

Abdelgawad Mohamed S.ORCID,Cannon IantoORCID,Rosti Marco E.ORCID

Abstract

AbstractNon-Newtonian fluids have a viscosity that varies with applied stress. Elastoviscoplastic fluids, the elastic, viscous and plastic properties of which are interconnected in a non-trivial way, belong to this category. We have performed numerical simulations to investigate turbulence in elastoviscoplastic fluids at very high Reynolds-number values, as found in landslides and lava flows, focusing on the effect of plasticity. We find that the range of active scales in the energy spectrum reduces when increasing the fluid plasticity; when plastic effects dominate, a new scaling range emerges between the inertial range and the dissipative scales. An extended self-similarity analysis of the structure functions reveals that intermittency is present and grows with the fluid plasticity. The enhanced intermittency is caused by the non-Newtonian dissipation rate, which also exhibits an intermittent behaviour. These findings have relevance to catastrophic events in natural flows, such as landslides and lava flows, where the enhanced intermittency results in stronger extreme events, which are thus more destructive and difficult to predict.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3