Long-lived valley states in bilayer graphene quantum dots

Author:

Garreis RebekkaORCID,Tong ChuyaoORCID,Terle Jocelyn,Ruckriegel Max JosefORCID,Gerber Jonas DanielORCID,Gächter Lisa MariaORCID,Watanabe KenjiORCID,Taniguchi TakashiORCID,Ihn ThomasORCID,Ensslin KlausORCID,Huang Wei WisterORCID

Abstract

AbstractBilayer graphene is a promising platform for electrically controllable qubits in a two-dimensional material. Of particular interest is the ability to encode quantum information in the valley degree of freedom, a two-fold orbital degeneracy that arises from the symmetry of the hexagonal crystal structure. The use of valleys could be advantageous, as known spin- and orbital-mixing mechanisms are unlikely to be at work for valleys, promising more robust qubits. The Berry curvature associated with valley states allows for electrical control of their energies, suggesting routes for coherent qubit manipulation. However, the relaxation time of valley states—which ultimately limits these qubits’ coherence properties and therefore their suitability as practical qubits—is not yet known. Here we measure the characteristic relaxation times of these spin and valley states in gate-defined bilayer graphene quantum dot devices. Different valley states can be distinguished from each other with a fidelity of over 99%. The relaxation time between valley triplets and singlets exceeds 500 ms and is more than one order of magnitude longer than for spin states. This work facilitates future measurements on valley-qubit coherence, demonstrating bilayer graphene as a practical platform hosting electrically controlled, long-lived valley qubits.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3