Machine learning force fields for molecular liquids: Ethylene Carbonate/Ethyl Methyl Carbonate binary solvent

Author:

Magdău Ioan-BogdanORCID,Arismendi-Arrieta Daniel J.ORCID,Smith Holly E.ORCID,Grey Clare P.ORCID,Hermansson Kersti,Csányi GáborORCID

Abstract

AbstractHighly accurate ab initio molecular dynamics (MD) methods are the gold standard for studying molecular mechanisms in the condensed phase, however, they are too expensive to capture many key properties that converge slowly with respect to simulation length and time scales. Machine learning (ML) approaches which reach the accuracy of ab initio simulation, and which are, at the same time, sufficiently affordable hold the key to bridging this gap. In this work we present a robust ML potential for the EC:EMC binary solvent, a key component of liquid electrolytes in rechargeable Li-ion batteries. We identify the necessary ingredients needed to successfully model this liquid mixture of organic molecules. In particular, we address the challenge posed by the separation of scale between intra- and inter-molecular interactions, which is a general issue in all condensed phase molecular systems.

Funder

EC | Horizon 2020 Framework Programme

RCUK | Engineering and Physical Sciences Research Council

Vetenskapsrådet

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3