Inferring topological transitions in pattern-forming processes with self-supervised learning

Author:

Abram Marcin,Burghardt Keith,Ver Steeg GregORCID,Galstyan Aram,Dingreville RemiORCID

Abstract

AbstractThe identification of transitions in pattern-forming processes are critical to understand and fabricate microstructurally precise materials in many application domains. While supervised methods can be useful to identify transition regimes, they need labels, which require prior knowledge of order parameters or relevant microstructures describing these transitions. Instead, we develop a self-supervised, neural-network-based approach that does not require predefined labels about microstructure classes to predict process parameters from observed microstructures. We show that assessing the difficulty of solving this inverse problem can be used to uncover microstructural transitions. We demonstrate our approach by automatically discovering microstructural transitions in two distinct pattern-forming processes: the spinodal decomposition of a two-phase mixture and the formation of binary-alloy microstructures during physical vapor deposition of thin films. This approach opens a path forward for discovering unseen or hard-to-discern transitions and ultimately controlling complex pattern-forming processes.

Funder

DOE | National Nuclear Security Administration

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The glass transition of CuZr metallic glasses in the perspective of machine learning;Computational Materials Science;2024-09

2. Benchmarking machine learning strategies for phase-field problems;Modelling and Simulation in Materials Science and Engineering;2024-07-15

3. Turing instability analysis and parameter identification based on optimal control and statistics method for a rumor propagation system;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-05-01

4. MICRO2D: A Large, Statistically Diverse, Heterogeneous Microstructure Dataset;Integrating Materials and Manufacturing Innovation;2024-02-12

5. Beyond Combinatorial Materials Science: The 100 Prisoners Problem;Integrating Materials and Manufacturing Innovation;2024-01-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3