Benchmarking machine learning strategies for phase-field problems

Author:

Dingreville RémiORCID,Roberston Andreas E,Attari VahidORCID,Greenwood MichaelORCID,Ofori-Opoku NanaORCID,Ramesh MythreyiORCID,Voorhees Peter WORCID,Zhang Qian

Abstract

Abstract We present a comprehensive benchmarking framework for evaluating machine-learning approaches applied to phase-field problems. This framework focuses on four key analysis areas crucial for assessing the performance of such approaches in a systematic and structured way. Firstly, interpolation tasks are examined to identify trends in prediction accuracy and accumulation of error over simulation time. Secondly, extrapolation tasks are also evaluated according to the same metrics. Thirdly, the relationship between model performance and data requirements is investigated to understand the impact on predictions and robustness of these approaches. Finally, systematic errors are analyzed to identify specific events or inadvertent rare events triggering high errors. Quantitative metrics evaluating the local and global description of the microstructure evolution, along with other scalar metrics representative of phase-field problems, are used across these four analysis areas. This benchmarking framework provides a path to evaluate the effectiveness and limitations of machine-learning strategies applied to phase-field problems, ultimately facilitating their practical application.

Funder

U.S. Department of Commerce, National Institute of Standards and Technology

National Nuclear Security Administration

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3