Rethinking materials simulations: Blending direct numerical simulations with neural operators

Author:

Oommen VivekORCID,Shukla Khemraj,Desai Saaketh,Dingreville RémiORCID,Karniadakis George EmORCID

Abstract

AbstractMaterials simulations based on direct numerical solvers are accurate but computationally expensive for predicting materials evolution across length- and time-scales, due to the complexity of the underlying evolution equations, the nature of multiscale spatiotemporal interactions, and the need to reach long-time integration. We develop a method that blends direct numerical solvers with neural operators to accelerate such simulations. This methodology is based on the integration of a community numerical solver with a U-Net neural operator, enhanced by a temporal-conditioning mechanism to enable accurate extrapolation and efficient time-to-solution predictions of the dynamics. We demonstrate the effectiveness of this hybrid framework on simulations of microstructure evolution via the phase-field method. Such simulations exhibit high spatial gradients and the co-evolution of different material phases with simultaneous slow and fast materials dynamics. We establish accurate extrapolation of the coupled solver with large speed-up compared to DNS depending on the hybrid strategy utilized. This methodology is generalizable to a broad range of materials simulations, from solid mechanics to fluid dynamics, geophysics, climate, and more.

Funder

DOE | National Nuclear Security Administration

United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research

Publisher

Springer Science and Business Media LLC

Reference77 articles.

1. Hughes, T. J.The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (Courier Corporation, 2012).

2. Godunov, S. K. & Bohachevsky, I. Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics. Matematičeskij Sb. 47, 271–306 (1959).

3. Eymard, R., Gallouët, T. & Herbin, R. Finite volume methods. Handb. Numer. Anal. 7, 713–1018 (2000).

4. Karniadakis, G. & Sherwin, S. J.Spectral/HP Element Methods for Computational Fluid Dynamics (Oxford University Press, USA, 2005).

5. Hornik, K., Stinchcombe, M. & White, H. Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Netw. 3, 551–560 (1990).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine learning surrogate for 3D phase-field modeling of ferroelectric tip-induced electrical switching;npj Computational Materials;2024-08-30

2. Benchmarking machine learning strategies for phase-field problems;Modelling and Simulation in Materials Science and Engineering;2024-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3