Abstract
AbstractAlloying is an established strategy to tune the properties of bulk compounds for desired applications. With the advent of nanotechnology, the same strategy can be applied to 2D materials for technological applications, like single-layer transistors and solid lubricants. Here we present a systematic analysis of the phase behaviour of substitutional 2D alloys in the Transition Metal Disulfides (TMD) family. The phase behaviour is quantified in terms of a metastability metric and benchmarked against many-body expansion of the energy landscape. We show how the metastability metric can be directly used as starting point for setting up rational search strategies in phase space, thus allowing for targeted further computational prediction and analysis of properties. The results presented here also constitute a useful guideline for synthesis of TMDs binary alloys via a range of synthesis techniques.
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献