Code interoperability extends the scope of quantum simulations

Author:

Govoni MarcoORCID,Whitmer JonathanORCID,de Pablo Juan,Gygi FrancoisORCID,Galli GiuliaORCID

Abstract

AbstractThe functionality of many materials is critically dependent on the integration of dissimilar components and on the interfaces that arise between them. The description of such heterogeneous components requires the development and deployment of first principles methods, coupled to appropriate dynamical descriptions of matter and advanced sampling techniques, in order to capture all the relevant length and time scales of importance to the materials’ performance. It is thus essential to build simple, streamlined computational schemes for the prediction and design of multiple properties of broad classes of materials, by developing interoperable codes which can be efficiently coupled to each other to perform complex tasks. We discuss the use of interoperable codes to simulate the structural and spectroscopic characterization of materials, including chemical reactions for catalysis, the description of defects for quantum information science, and heat and charge transport.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modelling and Simulation

Reference150 articles.

1. Curtarolo, S. et al. AFLOWLIB.ORG: a distributed materials properties repository from high-throughput ab initio calculations. Comput. Mater. Sci. 58, 227–235 (2012).

2. Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

3. Saal, J. E., Kirklin, S., Aykol, M., Meredig, B. & Wolverton, C. Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). J. Mater. 65, 1501–1509 (2013).

4. Bhat, T. N., Bartolo, L. M., Kattner, U. R., Campbell, C. E. & Elliott, J. T. Strategy for extensible, evolving terminology for the materials genome initiative efforts. J. Mater. 67, 1866–1875 (2015).

5. Kalidindi, S. R. & De Graef, M. Materials data science: current status and future outlook. Ann. Rev. Mater. Res. 45, 171–193 (2015).

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Plugin-based interoperability and ecosystem management for the MolSSI Driver Interface Project;The Journal of Chemical Physics;2024-06-04

2. Roadmap on electronic structure codes in the exascale era;Modelling and Simulation in Materials Science and Engineering;2023-08-07

3. GPU Acceleration of Large-Scale Full-Frequency GW Calculations;Journal of Chemical Theory and Computation;2022-08-01

4. Quantum embedding theories to simulate condensed systems on quantum computers;Nature Computational Science;2022-07-25

5. Free-Energy Landscape and Isomerization Rates of Au4 Clusters at Finite Temperatures;The Journal of Physical Chemistry A;2022-05-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3