Plugin-based interoperability and ecosystem management for the MolSSI Driver Interface Project

Author:

Barnes T. A.1ORCID,Ellis S.1ORCID,Chen J.1ORCID,Plimpton S. J.2ORCID,Nash J. A.1ORCID

Affiliation:

1. Molecular Sciences Software Institute 1 , Blacksburg, Virginia 24060, USA

2. Temple University 2 , Philadelphia, Pennsylvania 19122, USA

Abstract

The MolSSI Driver Interface (MDI) Project is an effort to simplify and standardize the process of enabling tight interoperability between independently developed code bases and is supported by numerous software packages across the domain of chemical physics. It enables a wide variety of use cases, including quantum mechanics/molecular mechanics, advanced sampling, path integral molecular dynamics, machine learning, ab initio molecular dynamics, etc. We describe two major developments within the MDI Project that provide novel solutions to key interoperability challenges. The first of these is the development of the MDI Plugin System, which allows MDI-supporting libraries to be used as highly modular plugins, with MDI enforcing a standardized application programming interface across plugins. Codes can use these plugins without linking against them during their build process, and end-users can select which plugin(s) they wish to use at runtime. The MDI Plugin System features a sophisticated callback system that allows codes to interact with plugins on a highly granular level and represents a significant advancement toward increased modularity among scientific codes. The second major development is MDI Mechanic, an ecosystem management tool that utilizes Docker containerization to simplify the process of developing, validating, maintaining, and deploying MDI-supporting codes. Additionally, MDI Mechanic provides a framework for launching MDI simulations in which each interoperating code is executed within a separate computational environment. This eliminates the need to compile multiple production codes within a single computational environment, reducing opportunities for dependency conflicts and lowering the barrier to entry for users of MDI-enabled codes.

Funder

National Science Foundation

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Monte Carlo molecular simulations with FEASST version 0.25.1;The Journal of Chemical Physics;2024-09-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3