Machine learning enabled autonomous microstructural characterization in 3D samples

Author:

Chan HenryORCID,Cherukara Mathew,Loeffler Troy D.,Narayanan Badri,Sankaranarayanan Subramanian K. R. S.

Abstract

AbstractWe introduce an unsupervised machine learning (ML) based technique for the identification and characterization of microstructures in three-dimensional (3D) samples obtained from molecular dynamics simulations, particle tracking data, or experiments. Our technique combines topology classification, image processing, and clustering algorithms, and can handle a wide range of microstructure types including grains in polycrystalline materials, voids in porous systems, and structures from self/directed assembly in soft-matter complex solutions. Our technique does not require a priori microstructure description of the target system and is insensitive to disorder such as extended defects in polycrystals arising from line and plane defects. We demonstrate quantitively that our technique provides unbiased microstructural information such as precise quantification of grains and their size distributions in 3D polycrystalline samples, characterizes features such as voids and porosity in 3D polymeric samples and micellar size distribution in 3D complex fluids. To demonstrate the efficacy of our ML approach, we benchmark it against a diverse set of synthetic data samples representing nanocrystalline metals, polymers and complex fluids as well as experimentally published characterization data. Our technique is computationally efficient and provides a way to quickly identify, track, and quantify complex microstructural features that impact the observed material behavior.

Funder

DOE | SC | Basic Energy Sciences

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3