How Grain Growth Stops: A Mechanism for Grain-Growth Stagnation in Pure Materials

Author:

Holm Elizabeth A.1,Foiles Stephen M.1

Affiliation:

1. Computational Materials Science and Engineering Department, Sandia National Laboratories, Albuquerque, NM 87185–1411, USA.

Abstract

Taking the Rough with the Smooth Even with extensive annealing at high temperatures, most polycrystalline materials will not become a perfect single crystal, which would represent the thermodynamically preferred state. The stability of the polycrystalline state has been attributed to the presence of impurities that accumulate at the grain boundaries, but even very pure materials show grain growth stagnation. Using simulations, Holm and Foiles (p. 1138 ) show that grain boundaries can be classified as “rough” and “smooth.” Rough boundaries move continuously with well-defined activation energies, while the smooth boundaries have low mobility and move in a jerky, stepwise manner. With heating, a boundary can change from smooth to rough, but the transition temperature can vary by hundreds of degrees from one grain boundary to the next. These smooth, low-mobility boundaries thus pin the polycrystalline structure, even in the absence of impurities.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference33 articles.

1. Some factors affecting the rate of grain growth in metals;Burke J. E.;AIME Trans.,1949

2. Grains, phases and interfaces: An interpretation of microstructure;Smith C. S.;AIME Trans.,1948

3. The effect of thermal grooving on grain boundary motion

4. Recrystallization and grain growth

5. The impurity-drag effect in grain boundary motion

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3