Abstract
AbstractNeural network-based generative models have been actively investigated as an inverse design method for finding novel materials in a vast design space. However, the applicability of conventional generative models is limited because they cannot access data outside the range of training sets. Advanced generative models that were devised to overcome the limitation also suffer from the weak predictive power on the unseen domain. In this study, we propose a deep neural network-based forward design approach that enables an efficient search for superior materials far beyond the domain of the initial training set. This approach compensates for the weak predictive power of neural networks on an unseen domain through gradual updates of the neural network with active transfer learning and data augmentation methods. We demonstrate the potential of our framework with a grid composite optimization problem that has an astronomical number of possible design configurations. Results show that our proposed framework can provide excellent designs close to the global optima, even with the addition of a very small dataset corresponding to less than 0.5% of the initial training dataset size.
Funder
National Research Foundation of Korea
KAIST
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Mechanics of Materials,General Materials Science,Modelling and Simulation
Cited by
98 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献