A new framework for predicting tensile stress of natural rubber based on data augmentation and molecular dynamics simulation data

Author:

Hu Anwen,Liu Zhanjie,Chen Qionghai,Zhan Siqi,Li Qian,Cui LihongORCID,Liu JunORCID

Abstract

This study addresses the challenge of predicting the tensile stress of natural rubber with limited molecular dynamics simulation data, which is a crucial mechanical property for this material. Molecular dynamics (MD) simulations are limited by their scale and computational cost, making it difficult to obtain sufficient data to train machine learning algorithms. To overcome this limitation, we propose a machine learning framework involving three stages: (1) utilizing a Variational Autoencoder (VAE) to rapidly expand the data diversity; (2) employing Ordinary Kriging (OK) to label the VAE-generated virtual samples; and (3) training gradient enhanced regression [Gradient Boosting Regression (GBR)] models by using relevant data on tensile stress in natural rubber. The results demonstrate that the generated data exhibits enhanced rationality, significantly improving the accuracy and reliability of various regression models. This approach provides an effective solution to the problem of data scarcity in MD simulations.

Publisher

OAE Publishing Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3