Mechanical-electrical-chemical coupling study on the stabilization of a hafnia-based ferroelectric phase

Author:

Bai Fenyun,Liao Jiajia,Yang Jiangheng,Jiang YanpingORCID,Tang XinguiORCID,Liu Qiuxiang,Tang Zhenhua,Zhou YichunORCID

Abstract

AbstractThe metastable polar orthorhombic phase is believed to be the origin of the ferroelectricity of hafnia-based films. The adjustment of stain, oxygen vacancies and dopant during film deposition and the wake-up electric cycling are common strategies to induce the ferroelectricity in hafnia. However, none of them could independently render the ferroelectric phase to be the most stable phase from the theoretical calculation results. The exact external conditions to stabilize orthorhombic phase still remain elusive. In this paper, we investigate the effects of the type, distribution, concentration, and charge state characteristics of oxygen vacancies and the uniaxial strain on the crystal’ energy, dielectric constant and spontaneous polarization (Ps); In addition, the impact of the applied electric field parallel to the Ps on the crystal’ energy is explored by first-principles calculations. It is challenging to independently stabilize the ferroelectric phase of hafnia-based films by a single component owing to the rather strict conditions. Surprisingly, the ferroelectricity can be easily obtained when simultaneously considering the effects of oxygen vacancies, uniaxial strain, and applied electric fields, suggesting the extremely important mechanical-electrical-chemical coupling effects. This work provides an explanation for the typical wake-up phenomenon in hafnia and a guidance for film applications.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Processing of hafnium oxide thin films by 2 MeV Kr ion beam for opto-electronic applications;Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms;2024-09

2. Sub-5nm Al-doped HfO2 ferroelectric thin films compatible with 3D NAND process;Journal of Alloys and Compounds;2024-09

3. Progress in computational understanding of ferroelectric mechanisms in HfO2;npj Computational Materials;2024-08-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3