JARVIS-Leaderboard: a large scale benchmark of materials design methods

Author:

Choudhary KamalORCID,Wines DanielORCID,Li KangmingORCID,Garrity Kevin F.ORCID,Gupta VishuORCID,Romero Aldo H.ORCID,Krogel Jaron T.ORCID,Saritas KayahanORCID,Fuhr AddisORCID,Ganesh PanchapakesanORCID,Kent Paul R. C.ORCID,Yan KeqiangORCID,Lin YuchaoORCID,Ji ShuiwangORCID,Blaiszik BenORCID,Reiser PatrickORCID,Friederich PascalORCID,Agrawal AnkitORCID,Tiwary PratyushORCID,Beyerle Eric,Minch Peter,Rhone Trevor DavidORCID,Takeuchi IchiroORCID,Wexler Robert B.ORCID,Mannodi-Kanakkithodi ArunORCID,Ertekin ElifORCID,Mishra AvanishORCID,Mathew NithinORCID,Wood MitchellORCID,Rohskopf Andrew DaleORCID,Hattrick-Simpers JasonORCID,Wang Shih-HanORCID,Achenie Luke E. K.ORCID,Xin HongliangORCID,Williams MaureenORCID,Biacchi Adam J.ORCID,Tavazza FrancescaORCID

Abstract

AbstractLack of rigorous reproducibility and validation are significant hurdles for scientific development across many fields. Materials science, in particular, encompasses a variety of experimental and theoretical approaches that require careful benchmarking. Leaderboard efforts have been developed previously to mitigate these issues. However, a comprehensive comparison and benchmarking on an integrated platform with multiple data modalities with perfect and defect materials data is still lacking. This work introduces JARVIS-Leaderboard, an open-source and community-driven platform that facilitates benchmarking and enhances reproducibility. The platform allows users to set up benchmarks with custom tasks and enables contributions in the form of dataset, code, and meta-data submissions. We cover the following materials design categories: Artificial Intelligence (AI), Electronic Structure (ES), Force-fields (FF), Quantum Computation (QC), and Experiments (EXP). For AI, we cover several types of input data, including atomic structures, atomistic images, spectra, and text. For ES, we consider multiple ES approaches, software packages, pseudopotentials, materials, and properties, comparing results to experiment. For FF, we compare multiple approaches for material property predictions. For QC, we benchmark Hamiltonian simulations using various quantum algorithms and circuits. Finally, for experiments, we use the inter-laboratory approach to establish benchmarks. There are 1281 contributions to 274 benchmarks using 152 methods with more than 8 million data points, and the leaderboard is continuously expanding. The JARVIS-Leaderboard is available at the website: https://pages.nist.gov/jarvis_leaderboard/

Funder

United States Department of Commerce | National Institute of Standards and Technology

National Science Foundation

U.S. Department of Energy

Publisher

Springer Science and Business Media LLC

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3