Abstract
Abstract
The observation of superconductivity in hydride-based materials under ultrahigh pressures (for example, H3S and LaH10) has fueled the interest in a more data-driven approach to discovering new high-pressure hydride superconductors. In this work, we performed density functional theory (DFT) calculations to predict the critical temperature (
T
c
) of over 900 hydride materials under a pressure range of (0–500) GPa, where we found 122 dynamically stable structures with a
T
c
above MgB2 (39 K). To accelerate screening, we trained a graph neural network (GNN) model to predict
T
c
and demonstrated that a universal machine learned force-field can be used to relax hydride structures under arbitrary pressures, with significantly reduced cost. By combining DFT and GNNs, we can establish a more complete map of hydrides under pressure.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献