Abstract
AbstractStrengths of nanograined (ng) and nanotwinned (nt) metals increase with decreasing grain size and twin thickness, respectively, until reaching a critical value, below which strength decreases. This behavior is known as the reverse Hall–Petch effect (RHPE), which has also been observed in nanograined cubic boron nitride (cBN) and diamond. Surprisingly, however, hardness of nt-cBN and nt-diamond increases continuously with decreasing twin thickness down to several nanometers, suggesting the absence of RHPE in these covalent materials. The mechanism responsible for such a behavior remains controversial. Here we investigate the strengthening mechanisms in ng- and nt-diamond using molecular dynamics and first-principles calculations. For ng-diamond, the competition between shuffle-set dislocation (SSD) and grain boundary atom motions gives rise to RHPE. For nt-diamond, SSDs remain dominant but their slips along twin boundaries energetically show no advantage over those along other slip planes. Twin domains are locked and mechanically stable, resisting SSD propagation and inhibiting RHPE. These findings provide new insights into the hardening mechanism of nanotwinned covalent materials.
Funder
National Key R&D Program of China
National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund
the National Key R&D Program of China
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献