Efficient screening framework for organic solar cells with deep learning and ensemble learning

Author:

Wang HongshuaiORCID,Feng Jie,Dong Zhihao,Jin Lujie,Li Miaomiao,Yuan JianyuORCID,Li YouyongORCID

Abstract

AbstractOrganic photovoltaics have attracted worldwide interest due to their unique advantages in developing low-cost, lightweight, and flexible power sources. Functional molecular design and synthesis have been put forward to accelerate the discovery of ideal organic semiconductors. However, it is extremely expensive to conduct experimental screening of the wide organic compound space. Here we develop a framework by combining a deep learning model (graph neural network) and an ensemble learning model (Light Gradient Boosting Machine), which enables rapid and accurate screening of organic photovoltaic molecules. This framework establishes the relationship between molecular structure, molecular properties, and device efficiency. Our framework evaluates the chemical structure of the organic photovoltaic molecules directly and accurately. Since it does not involve density functional theory calculations, it makes fast predictions. The reliability of our framework is verified with data from previous reports and our newly synthesized organic molecules. Our work provides an efficient method for developing new organic optoelectronic materials.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3