Explainable AI for optimizing oxygen reduction on Pt monolayer core–shell catalysts

Author:

Omidvar Noushin1ORCID,Wang Shih‐Han1,Huang Yang1,Pillai Hemanth Somarajan1,Athawale Andy1,Wang Siwen1,Achenie Luke E. K.1,Xin Hongliang1

Affiliation:

1. Department of Chemical Engineering Virginia Polytechnic Institute and State University Blacksburg Virginia USA

Abstract

AbstractAs a subfield of artificial intelligence (AI), machine learning (ML) has emerged as a versatile tool in accelerating catalytic materials discovery because of its ability to find complex patterns in high‐dimensional data. While the intricacy of cutting‐edge ML models, such as deep learning, makes them powerful, it also renders decision‐making processes challenging to explain. Recent advances in explainable AI technologies, which aim to make the inner workings of ML models understandable to humans, have considerably increased our capacity to gain insights from data. In this study, taking the oxygen reduction reaction (ORR) on {111}‐oriented Pt monolayer core–shell catalysts as an example, we show how the recently developed theory‐infused neural network (TinNet) algorithm enables a rapid search for optimal site motifs with the chemisorption energy of hydroxyl (OH) as a single descriptor, revealing the underlying physical factors that govern the variations in site reactivity. By exploring a broad design space of Pt monolayer core–shell alloys ( candidates) that were generated from thermodynamically stable bulk structures in existing material databases, we identified novel alloy systems along with previously known catalysts in the goldilocks zone of reactivity properties. SHAP (SHapley Additive exPlanations) analysis reveals the important role of adsorbate resonance energies that originate from ‐band interactions in chemical bonding at metal surfaces. Extracting physical insights into surface reactivity with explainable AI opens up new design pathways for optimizing catalytic performance beyond active sites.

Funder

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3