Intersystem crossing and exciton–defect coupling of spin defects in hexagonal boron nitride

Author:

Smart Tyler J.,Li Kejun,Xu Junqing,Ping YuanORCID

Abstract

AbstractDespite the recognition of two-dimensional (2D) systems as emerging and scalable host materials of single-photon emitters or spin qubits, the uncontrolled, and undetermined chemical nature of these quantum defects has been a roadblock to further development. Leveraging the design of extrinsic defects can circumvent these persistent issues and provide an ultimate solution. Here, we established a complete theoretical framework to accurately and systematically design quantum defects in wide-bandgap 2D systems. With this approach, essential static and dynamical properties are equally considered for spin qubit discovery. In particular, many-body interactions such as defect–exciton couplings are vital for describing excited state properties of defects in ultrathin 2D systems. Meanwhile, nonradiative processes such as phonon-assisted decay and intersystem crossing rates require careful evaluation, which competes together with radiative processes. From a thorough screening of defects based on first-principles calculations, we identify promising single-photon emitters such as SiVV and spin qubits such as TiVV and MoVV in hexagonal boron nitride. This work provided a complete first-principles theoretical framework for defect design in 2D materials.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3