Abstract
Abstract
Optically active quantum defects play an important role in quantum sensing, computing and communication. The electronic structure and the single-particle energy levels of these quantum defects in the semiconducting host have been used to understand their optoelectronic properties. Optical excitations that are central for their initialization and readout are linked to transitions between occupied and unoccupied single-particle states. It is commonly assumed that only quantum defects introducing levels well within the band gap and far from the band edges are of interest for quantum technologies as they mimic an isolated atom embedded in the host. In this perspective, we contradict this common assumption and show that optically active defects with energy levels close to the band edges can display similar properties. We highlight quantum defects that are excited through transitions to or from a band-like level (bound exciton) such as the T center and Se
S
i
+
in silicon. We also present how defects such as the silicon split-vacancy in diamond can involve transitions between localized levels that are above the conduction band or below the valence band. Loosening the commonly assumed requirement on the electronic structure of quantum defects offers opportunities in quantum defects design and discovery especially in smaller band gap hosts such as silicon. We discuss the challenges in terms of operating temperature for photoluminescence or radiative lifetime in this regime. We also highlight how these alternative type of defects bring their own needs in terms of theoretical developments and fundamental understanding. This perspective clarifies the electronic structure requirement for quantum defects and will facilitate the identification and design of new color centers for quantum applications especially driven by first principles computations.
Funder
Basic Energy Sciences
National Energy Research Scientific Computing Center
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献