Extracting local nucleation fields in permanent magnets using machine learning

Author:

Gusenbauer MarkusORCID,Oezelt HaraldORCID,Fischbacher JohannORCID,Kovacs Alexander,Zhao Panpan,Woodcock Thomas GeorgeORCID,Schrefl Thomas

Abstract

AbstractMicrostructural features play an important role in the quality of permanent magnets. The coercivity is greatly influenced by crystallographic defects, like twin boundaries, as is well known for MnAl-C. It would be very useful to be able to predict the macroscopic coercivity from microstructure imaging. Although this is not possible now, in the present work we examine a related question, namely the prediction of simulated nucleation fields of a quasi-three-dimensional (rescaled and extruded) system constructed from a two-dimensional image. We extract features of the image and analyze them via machine learning. A large number of extruded systems are constructed from 10 × 10 pixel sub-images of an Electron Backscatter Diffraction (EBSD) image using an automated meshing procedure. A local nucleation field is calculated by micromagnetic simulation of each quasi-three-dimensional system. Decision trees, trained with the simulation results, can predict nucleation fields of these quasi-three-dimensional systems from new images within seconds. As for now we cannot quantitatively predict the macroscopic coercivity, nevertheless we can identify weak spots in the magnet and see trends in the nucleation field distribution.

Funder

Austrian Science Fund

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3