Tomography-based digital twin of Nd-Fe-B permanent magnets

Author:

Bolyachkin AntonORCID,Dengina Ekaterina,Kulesh NikitaORCID,Tang Xin,Sepehri-Amin HosseinORCID,Ohkubo TadakatsuORCID,Hono Kazuhiro

Abstract

AbstractMany functional materials have been designed at the multiscale level. To properly simulate their physical properties, large and sophisticated computer models that can replicate microstructural features with nanometer-scale accuracy are required. This is the case for permanent magnets, which exhibit a long-standing problem of a significant offset between the simulated and experimental coercivities. To overcome this problem and resolve the Brown paradox, we propose an approach to construct large-scale finite element models based on the tomographic data from scanning electron microscopy. Our approach reconstructs a polycrystalline microstructure with actual shape, size, and packing of the grains as well as the individual regions of thin intergranular phase separated by triple junctions. Such a micromagnetic model can reproduce the experimental coercivity of ultrafine-grained Nd-Fe-B magnets along with its mechanism according to the angular dependence of coercivity. Furthermore, a remarkable role of thin triple junctions as nucleation centers for magnetization reversal is revealed. The developed digital twins of Nd-Fe-B permanent magnets can assist their optimization toward the ultimate coercivity, while the proposed tomography-based approach can be applied to a wide range of polycrystalline materials.

Funder

Ministry of Education, Culture, Sports, Science and Technology

MEXT | Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3