Abstract
AbstractGenomic selection has increased genetic gain in several livestock species, but due to the complicated genetics and reproduction biology not yet in honey bees. Recently, 2970 queens were genotyped to gather a reference population. For the application of genomic selection in honey bees, this study analyzes the accuracy and bias of pedigree-based and genomic breeding values for honey yield, three workability traits, and two traits for resistance against the parasite Varroa destructor. For breeding value estimation, we use a honey bee-specific model with maternal and direct effects, to account for the contributions of the workers and the queen of a colony to the phenotypes. We conducted a validation for the last generation and a five-fold cross-validation. In the validation for the last generation, the accuracy of pedigree-based estimated breeding values was 0.12 for honey yield, and ranged from 0.42 to 0.61 for the workability traits. The inclusion of genomic marker data improved these accuracies to 0.23 for honey yield, and a range from 0.44 to 0.65 for the workability traits. The inclusion of genomic data did not improve the accuracy of the disease-related traits. Traits with high heritability for maternal effects compared to the heritability for direct effects showed the most promising results. For all traits except the Varroa resistance traits, the bias with genomic methods was on a similar level compared to the bias with pedigree-based BLUP. The results show that genomic selection can successfully be applied to honey bees.
Funder
Bundesministerium für Ernährung und Landwirtschaft
European Commission
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献