Simulation studies to optimize genomic selection in honey bees

Author:

Bernstein RichardORCID,Du ManuelORCID,Hoppe AndreasORCID,Bienefeld KasparORCID

Abstract

Abstract Background With the completion of a single nucleotide polymorphism (SNP) chip for honey bees, the technical basis of genomic selection is laid. However, for its application in practice, methods to estimate genomic breeding values need to be adapted to the specificities of the genetics and breeding infrastructure of this species. Drone-producing queens (DPQ) are used for mating control, and usually, they head non-phenotyped colonies that will be placed on mating stations. Breeding queens (BQ) head colonies that are intended to be phenotyped and used to produce new queens. Our aim was to evaluate different breeding program designs for the initiation of genomic selection in honey bees. Methods Stochastic simulations were conducted to evaluate the quality of the estimated breeding values. We developed a variation of the genomic relationship matrix to include genotypes of DPQ and tested different sizes of the reference population. The results were used to estimate genetic gain in the initial selection cycle of a genomic breeding program. This program was run over six years, and different numbers of genotyped queens per year were considered. Resources could be allocated to increase the reference population, or to perform genomic preselection of BQ and/or DPQ. Results Including the genotypes of 5000 phenotyped BQ increased the accuracy of predictions of breeding values by up to 173%, depending on the size of the reference population and the trait considered. To initiate a breeding program, genotyping a minimum number of 1000 queens per year is required. In this case, genetic gain was highest when genomic preselection of DPQ was coupled with the genotyping of 10–20% of the phenotyped BQ. For maximum genetic gain per used genotype, more than 2500 genotyped queens per year and preselection of all BQ and DPQ are required. Conclusions This study shows that the first priority in a breeding program is to genotype phenotyped BQ to obtain a sufficiently large reference population, which allows successful genomic preselection of queens. To maximize genetic gain, DPQ should be preselected, and their genotypes included in the genomic relationship matrix. We suggest, that the developed methods for genomic prediction are suitable for implementation in genomic honey bee breeding programs.

Funder

Bundesministerium für Ernährung und Landwirtschaft

European Commission

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Animal Science and Zoology,General Medicine,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3