Prediction of tumor origin in cancers of unknown primary origin with cytology-based deep learning

Author:

Tian FeiORCID,Liu Dong,Wei Na,Fu Qianqian,Sun LinORCID,Liu WeiORCID,Sui Xiaolong,Tian Kathryn,Nemeth Genevieve,Feng Jingyu,Xu Jingjing,Xiao Lin,Han Junya,Fu Jingjie,Shi Yinhua,Yang YichenORCID,Liu JiaORCID,Hu Chunhong,Feng Bin,Sun Yan,Wang Yunjun,Yu Guohua,Kong Dalu,Wang MeiyunORCID,Li WencaiORCID,Chen KexinORCID,Li XiangchunORCID

Abstract

AbstractCancer of unknown primary (CUP) site poses diagnostic challenges due to its elusive nature. Many cases of CUP manifest as pleural and peritoneal serous effusions. Leveraging cytological images from 57,220 cases at four tertiary hospitals, we developed a deep-learning method for tumor origin differentiation using cytological histology (TORCH) that can identify malignancy and predict tumor origin in both hydrothorax and ascites. We examined its performance on three internal (n = 12,799) and two external (n = 14,538) testing sets. In both internal and external testing sets, TORCH achieved area under the receiver operating curve values ranging from 0.953 to 0.991 for cancer diagnosis and 0.953 to 0.979 for tumor origin localization. TORCH accurately predicted primary tumor origins, with a top-1 accuracy of 82.6% and top-3 accuracy of 98.9%. Compared with results derived from pathologists, TORCH showed better prediction efficacy (1.677 versus 1.265, P < 0.001), enhancing junior pathologists’ diagnostic scores significantly (1.326 versus 1.101, P < 0.001). Patients with CUP whose initial treatment protocol was concordant with TORCH-predicted origins had better overall survival than those who were administrated discordant treatment (27 versus 17 months, P = 0.006). Our study underscores the potential of TORCH as a valuable ancillary tool in clinical practice, although further validation in randomized trials is warranted.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3