Artificial intelligence applied to ‘omics data in liver disease: towards a personalised approach for diagnosis, prognosis and treatment

Author:

Ghosh Soumita,Zhao Xun,Alim Mouaid,Brudno Michael,Bhat MamathaORCID

Abstract

Advancements in omics technologies and artificial intelligence (AI) methodologies are fuelling our progress towards personalised diagnosis, prognosis and treatment strategies in hepatology. This review provides a comprehensive overview of the current landscape of AI methods used for analysis of omics data in liver diseases. We present an overview of the prevalence of different omics levels across various liver diseases, as well as categorise the AI methodology used across the studies. Specifically, we highlight the predominance of transcriptomic and genomic profiling and the relatively sparse exploration of other levels such as the proteome and methylome, which represent untapped potential for novel insights. Publicly available database initiatives such as The Cancer Genome Atlas and The International Cancer Genome Consortium have paved the way for advancements in the diagnosis and treatment of hepatocellular carcinoma. However, the same availability of large omics datasets remains limited for other liver diseases. Furthermore, the application of sophisticated AI methods to handle the complexities of multiomics datasets requires substantial data to train and validate the models and faces challenges in achieving bias-free results with clinical utility. Strategies to address the paucity of data and capitalise on opportunities are discussed. Given the substantial global burden of chronic liver diseases, it is imperative that multicentre collaborations be established to generate large-scale omics data for early disease recognition and intervention. Exploring advanced AI methods is also necessary to maximise the potential of these datasets and improve early detection and personalised treatment strategies.

Funder

CIFAR Chair in Artificial Intelligence Awarded to Michael Brudno

University of Toronto’s Eric and Wendy Schmidt AI in Science Postdoctoral Fellowship Awarded to Soumita Ghosh

Publisher

BMJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3