Diagnostic classification of childhood cancer using multiscale transcriptomics

Author:

Comitani FedericoORCID,Nash Joshua O.,Cohen-Gogo SarahORCID,Chang Astra I.,Wen Timmy T.,Maheshwari Anant,Goyal Bipasha,Tio Earvin S.ORCID,Tabatabaei Kevin,Mayoh ChelseaORCID,Zhao Regis,Ho Ben,Brunga Ledia,Lawrence John E. G.,Balogh Petra,Flanagan Adrienne M.ORCID,Teichmann SarahORCID,Huang Annie,Ramaswamy VijayORCID,Hitzler JohannORCID,Wasserman Jonathan D.ORCID,Gladdy Rebecca A.ORCID,Dickson Brendan C.ORCID,Tabori UriORCID,Cowley Mark J.ORCID,Behjati SamORCID,Malkin DavidORCID,Villani Anita,Irwin Meredith S.,Shlien AdamORCID

Abstract

AbstractThe causes of pediatric cancers’ distinctiveness compared to adult-onset tumors of the same type are not completely clear and not fully explained by their genomes. In this study, we used an optimized multilevel RNA clustering approach to derive molecular definitions for most childhood cancers. Applying this method to 13,313 transcriptomes, we constructed a pediatric cancer atlas to explore age-associated changes. Tumor entities were sometimes unexpectedly grouped due to common lineages, drivers or stemness profiles. Some established entities were divided into subgroups that predicted outcome better than current diagnostic approaches. These definitions account for inter-tumoral and intra-tumoral heterogeneity and have the potential of enabling reproducible, quantifiable diagnostics. As a whole, childhood tumors had more transcriptional diversity than adult tumors, maintaining greater expression flexibility. To apply these insights, we designed an ensemble convolutional neural network classifier. We show that this tool was able to match or clarify the diagnosis for 85% of childhood tumors in a prospective cohort. If further validated, this framework could be extended to derive molecular definitions for all cancer types.

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3