Predicting multiple taste sensations with a multiobjective machine learning method

Author:

Androutsos LamprosORCID,Pallante LorenzoORCID,Bompotas AgorakisORCID,Stojceski Filip,Grasso Gianvito,Piga Dario,Di Benedetto Giacomo,Alexakos ChristosORCID,Kalogeras Athanasios,Theofilatos KonstantinosORCID,Deriu Marco A.,Mavroudi SeferinaORCID

Abstract

AbstractTaste perception plays a pivotal role in guiding nutrient intake and aiding in the avoidance of potentially harmful substances through five basic tastes - sweet, bitter, umami, salty, and sour. Taste perception originates from molecular interactions in the oral cavity between taste receptors and chemical tastants. Hence, the recognition of taste receptors and the subsequent perception of taste heavily rely on the physicochemical properties of food ingredients. In recent years, several advances have been made towards the development of machine learning-based algorithms to classify chemical compounds’ tastes using their molecular structures. Despite the great efforts, there remains significant room for improvement in developing multi-class models to predict the entire spectrum of basic tastes. Here, we present a multi-class predictor aimed at distinguishing bitter, sweet, and umami, from other taste sensations. The development of a multi-class taste predictor paves the way for a comprehensive understanding of the chemical attributes associated with each fundamental taste. It also opens the potential for integration into the evolving realm of multi-sensory perception, which encompasses visual, tactile, and olfactory sensations to holistically characterize flavour perception. This concept holds promise for introducing innovative methodologies in the rational design of foods, including pre-determining specific tastes and engineering complementary diets to augment traditional pharmacological treatments.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3