Abstract
AbstractAdditive manufacturing of food is a method of creating three-dimensional edible products layer-by-layer. While food printers have been in use since 2007, commercial cooking appliances to simultaneously cook and print food layers do not yet exist. A key challenge has been the spatially controlled delivery of cooking energy. Here, we explore precision laser cooking which offers precise temporal and spatial control over heat delivery and the ability to cook, broil, cut and otherwise transform food products via customized software-driven patterns, including through packaging. Using chicken as a model food, we combine the cooking capabilities of a blue laser (λ = 445 nm), a near-infrared (NIR) laser (λ = 980 nm), and a mid-infrared (MIR) laser (λ = 10.6 μm) to broil printed chicken and find that IR light browns more efficiently than blue light, NIR light can brown and cook foods through packaging, laser-cooked foods experience about 50% less cooking loss than foods broiled in an oven, and calculate the cooking resolution of a laser to be ~1 mm. Infusing software into the cooking process will enable more creative food design, allow individuals to more precisely customize their meals, disintermediate food supply chains, streamline at-home food production, and generate horizontal markets for this burgeoning industry.
Publisher
Springer Science and Business Media LLC
Subject
Public Health, Environmental and Occupational Health,Food Science
Reference42 articles.
1. Zoran, A. & Coelho, M. Cornucopia: the Concept of Digital Gastronomy. MIT Press 44, 425–431 (2011).
2. Mizrahi, M. et al. Digital Gastronomy: Methods & Recipes for Hybrid Cooking. in Proceedings of the 29th Annual Symposium on User Interface Software and Technology - UIST ’16 541–552 (ACM Press, 2016). https://doi.org/10.1145/2984511.2984528.
3. Blutinger, J., Lipson, H. & Meijers, Y. Method and systems for laser-based cooking. US20190110505 A1, United States Patent and Trademark Office (2019).
4. Blutinger, J. D., Meijers, Y. & Lipson, H. Selective laser broiling of Atlantic salmon. Food Res. Int. 120, 196–208 (2019).
5. Periard, D., Schaal, N., Schaal, M., Malone, E. & Lipson, H. Printing Food. in Proceedings of the 18th Solid Freeform Fabrication Symposium 564–574 (2007).
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献