A Sartan Derivative with a Very Low Angiotensin II Receptor Affinity Ameliorates Ischemic Cerebral Damage

Author:

Takizawa Shunya1,Dan Takashi2,Uesugi Tsuyoshi1,Nagata Eiichiro1,Takagi Shigeharu1,van Ypersele de Strihou Charles3,Miyata Toshio2

Affiliation:

1. Division of Neurology, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan

2. Center for Translational and Advanced Research on Human Disease, Tohoku University Graduate School of Medicine, Miyagi, Japan

3. Service de Nephrologie, Universite Catholique de Louvain, Brussels, Belgium

Abstract

Angiotensin II receptor blockers (ARBs) have a potent ability to inhibit oxidative stress and advanced glycation, in addition to their protective effects originated from blood pressure lowering and angiotensin II type 1 receptor (AT1)-blockade. To obtain a pharmacological tool to dissect the mechanisms of ARBs’ protective benefits in experimental stroke, we synthesized a novel ARB-derivative, R-147176, which is 6,700 times less potent than olmesartan in AT1-binding inhibition and therefore has a minimal antihypertensive effect, but retains marked inhibitory effects on oxidative stress and advanced glycation. We evaluated the effect of R-147176 (10–30 mg/kg per day), administered orally or intravenously, on brain infarct volume in transient thread occlusion and photothrombotic models in rats. The antioxidative and antiinflammatory properties were also investigated. R-147176 significantly reduced infarct volume, without influence on blood pressure, in both models. R-147176 significantly reduced the numbers of ED-1-positive cells and of TUNEL-positive cells, and protein carbonyl formation in the damaged brain. This ARB derivative, despite its significantly lower AT1 affinity and virtually no antihypertensive effect, ameliorated ischemic cerebral damage through antioxidative and antiinflammatory properties. These findings suggest potential usefulness of R-147176 as a pharmacological tool to investigate the ARBs’ protective effect in experimental stroke and open new therapeutic avenues.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3