Glycolysis and the Pentose Phosphate Pathway after Human Traumatic Brain Injury: Microdialysis Studies Using 1,2-13C2 Glucose

Author:

Jalloh Ibrahim1,Carpenter Keri L H12,Grice Peter3,Howe Duncan J3,Mason Andrew3,Gallagher Clare N14,Helmy Adel1,Murphy Michael P5,Menon David K26,Carpenter T Adrian2,Pickard John D12,Hutchinson Peter J12

Affiliation:

1. Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK

2. Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK

3. Department of Chemistry, University of Cambridge, Cambridge, UK

4. Division of Neurosurgery, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada

5. MRC Mitochondrial Biology Unit, Cambridge, UK

6. Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK

Abstract

Increased ‘anaerobic’ glucose metabolism is observed after traumatic brain injury (TBI) attributed to increased glycolysis. An alternative route is the pentose phosphate pathway (PPP), which generates putatively protective and reparative molecules. To compare pathways we employed microdialysis to perfuse 1,2-13C2 glucose into the brains of 15 TBI patients and macroscopically normal brain in six patients undergoing surgery for benign tumors, and to simultaneously collect products for nuclear magnetic resonance (NMR) analysis. 13C enrichment for glycolytic 2,3-13C2 lactate was the median 5.4% (interquartile range (IQR) 4.6–7.5%) in TBI brain and 4.2% (2.4–4.4%) in ‘normal’ brain ( P<0.01). The ratio of PPP-derived 3-13C lactate to glycolytic 2,3-13C2 lactate was median 4.9% (3.6–8.2%) in TBI brain and 6.7% (6.3–8.9%) in ‘normal’ brain. An inverse relationship was seen for PPP-glycolytic lactate ratio versus PbtO2 ( r=−0.5, P=0.04) in TBI brain. Thus, glycolytic lactate production was significantly greater in TBI than ‘normal’ brain. Several TBI patients exhibited PPP—lactate elevation above the ‘normal’ range. There was proportionally greater PPP-derived lactate production with decreasing PbtO2. The study raises questions about the roles of the PPP and glycolysis after TBI, and whether they can be manipulated to achieve a better outcome. This study is the first direct comparison of glycolysis and PPP in human brain.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3