Affiliation:
1. Division of Neurosurgery, UCLA School of Medicine, University of California at Los Angeles, Los Angeles, California, U.S.A.
Abstract
Immediately following concussive brain injury, cells exhibit an increase of energy demand represented by the activation of glucose utilization. We have proposed that this trauma-induced hypermetabolism reflects the effort of cells to restore normal ionic balance disrupted by massive ionic fluxes through transmitter-gated ion channels. In the present study, changes in local CMRglc following fluid-percussion concussive injury were determined using [14C]2-deoxy-d-glucose autoradiography, and the effects of in situ administration (via microdialysis) of excitatory amino acid (EAA) antagonists [kynurenic acid (KYN), 2-amino-5-phosphonovaleric acid (APV; 100 μ M, 1 m M, and 10 m M), and 6-cyano-7-nitroquinoxaline-2,3-dine (CNQX; 300 μ M, 1 m M, and 10 m M] on glucose utilization were investigated. Animals that did not receive dialysis showed a remarkable increase (up to 181% of normal control) in cortical glucose utilization following injury. In contrast, this high demand for glucose was reduced in areas infiltrated with KYN, APV, and CNQX. These results indicate that EAA-activated ion channels are involved in the posttraumatic increase in glucose utilization, reflecting the energy demand of cells required to drive pumping mechanisms against an ionic perturbation seen immediately following the concussive injury. The effects of KYN, APV, and CNQX suggest that although all subtypes of the glutamate receptor appear to be involved in this phenomenon, N-methyl-d-aspartate-activated channels may play a major role.
Subject
Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology
Cited by
229 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献