Demonstration of tantalum as a structural material for MEMS thermal actuators

Author:

Ni Longchang,Pocratsky Ryan M.,de Boer Maarten P.ORCID

Abstract

AbstractThis work demonstrates the processing, modeling, and characterization of nanocrystalline refractory metal tantalum (Ta) as a new structural material for microelectromechanical system (MEMS) thermal actuators (TAs). Nanocrystalline Ta films have a coefficient of thermal expansion (CTE) and Young’s modulus comparable to bulk Ta but an approximately ten times greater yield strength. The mechanical properties and grain size remain stable after annealing at temperatures as high as 1000 °C. Ta has a high melting temperature (Tm = 3017 °C) and a low resistivity (ρ = 20 µΩ cm). Compared to TAs made from the dominant MEMS material, polycrystalline silicon (polysilicon, Tm = 1414 °C, ρ = 2000 µΩ cm), Ta TAs theoretically require less than half the power input for the same force and displacement, and their temperature change is half that of polysilicon. Ta TAs operate at a voltage 16 times lower than that of other TAs, making them compatible with complementary metal oxide semiconductors (CMOS). We select α-phase Ta and etch 2.5-μm-thick sputter-deposited films with a 1 μm width while maintaining a vertical sidewall profile to ensure in-plane movement of TA legs. This is 25 times thicker than the thickest reactive-ion-etched α-Ta reported in the technical literature. Residual stress sensitivities to sputter parameters and to hydrogen incorporation are investigated and controlled. Subsequently, a V-shaped TA is fabricated and tested in air. Both conventional actuation by Joule heating and passive self-actuation are as predicted by models.

Funder

National Science Foundation

Kavcic-Moura Endowment Fund

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3