An ultra-deep TSV technique enabled by the dual catalysis-based electroless plating of combined barrier and seed layers

Author:

Su Yuwen,Ding Yingtao,Xiao Lei,Zhang ZiyueORCID,Yan Yangyang,Liu Zhifang,Chen Zhiming,Xie Huikai

Abstract

AbstractSilicon interposers embedded with ultra-deep through-silicon vias (TSVs) are in great demand for the heterogeneous integration and packaging of opto-electronic chiplets and microelectromechanical systems (MEMS) devices. Considering the cost-effective and reliable manufacturing of ultra-deep TSVs, the formation of continuous barrier and seed layers remains a crucial challenge to solve. Herein, we present a novel dual catalysis-based electroless plating (ELP) technique by tailoring polyimide (PI) liner surfaces to fabricate dense combined Ni barrier/seed layers in ultra-deep TSVs. In additional to the conventional acid catalysis procedure, a prior catalytic step in an alkaline environment is proposed to hydrolyze the PI surface into a polyamide acid (PAA) interfacial layer, resulting in additional catalysts and the formation of a dense Ni layer that can function as both a barrier layer and a seed layer, particularly at the bottom of the deep TSV. TSVs with depths larger than 500 μm and no voids are successfully fabricated in this study. The fabrication process involves low costs and temperatures. For a fabricated 530-μm-deep TSV with a diameter of 70 μm, the measured depletion capacitance and leakage current are approximately 1.3 pF and 1.7 pA at 20 V, respectively, indicating good electrical properties. The proposed fabrication strategy can provide a cost-effective and feasible solution to the challenge of manufacturing ultra-deep TSVs for modern 3D heterogeneous integration and packaging applications.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3