Novel nondelay-based reservoir computing with a single micromechanical nonlinear resonator for high-efficiency information processing

Author:

Sun JieORCID,Yang Wuhao,Zheng Tianyi,Xiong Xingyin,Liu Yunfei,Wang Zheng,Li Zhitian,Zou Xudong

Abstract

AbstractReservoir computing is a potential neuromorphic paradigm for promoting future disruptive applications in the era of the Internet of Things, owing to its well-known low training cost and compatibility with hardware. It has been successfully implemented by injecting an input signal into a spatially extended reservoir of nonlinear nodes or a temporally extended reservoir of a delayed feedback system to perform temporal information processing. Here we propose a novel nondelay-based reservoir computer using only a single micromechanical resonator with hybrid nonlinear dynamics that removes the usually required delayed feedback loop. The hybrid nonlinear dynamics of the resonator comprise a transient nonlinear response, and a Duffing nonlinear response is first used for reservoir computing. Due to the richness of this nonlinearity, the usually required delayed feedback loop can be omitted. To further simplify and improve the efficiency of reservoir computing, a self-masking process is utilized in our novel reservoir computer. Specifically, we numerically and experimentally demonstrate its excellent performance, and our system achieves a high recognition accuracy of 93% on a handwritten digit recognition benchmark and a normalized mean square error of 0.051 in a nonlinear autoregressive moving average task, which reveals its memory capacity. Furthermore, it also achieves 97.17 ± 1% accuracy on an actual human motion gesture classification task constructed from a six-axis IMU sensor. These remarkable results verify the feasibility of our system and open up a new pathway for the hardware implementation of reservoir computing.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3