3D designed battery-free wireless origami pressure sensor

Author:

Kim Taeil,Kalhori Amirhossein Hassanpoor,Kim Tae-Ho,Bao Chao,Kim Woo SooORCID

Abstract

AbstractA pressure monitoring structure is a very useful element for a wearable device for health monitoring and sports biomechanics. While pressure sensors have been studied extensively, battery-free functions working in wireless detection have not been studied much. Here, we report a 3D-structured origami-based architecture sensor for wireless pressure monitoring. We developed an architectured platform for wireless pressure sensing through inductor-capacitor (LC) sensors and a monopole antenna. A personalized smart insole with Miura-ori origami designs has been 3D printed together with conductive 3D printed sensors seamlessly. Wireless monitoring of resonant frequency and intensity changes of LC sensors have been demonstrated to monitor foot pressure for different postures. The sensitivity of the wireless pressure sensor is tunable from 15.7 to 2.1 MHz/kPa in the pressure ranges from 0 to 9 kPa and from 10 to 40 kPa, respectively. The proposed wireless pressure-sensing platform can be utilized for various applications such as orthotics, prosthetics, and sports gear.

Funder

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Miura-Ori Microstructure-Enhanced Flexible Piezoresistive Pressure Sensor for Human Physiological Signal Monitoring;IEEE Sensors Letters;2023-09

2. Mechanical Metamaterials for Sensor and Actuator Applications;International Journal of Precision Engineering and Manufacturing-Green Technology;2023-08-17

3. Smart wearables addressing gait disorders: A review;Materials Today Communications;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3