Abstract
Abstract
Structures inspired by the Kresling origami pattern have recently emerged as a foundation for building functional engineering systems with versatile characteristics that target niche applications spanning different technological fields. Their light weight, deployability, modularity, and customizability are a few of the key characteristics that continue to drive their implementation in robotics, aerospace structures, metamaterial and sensor design, switching, actuation, energy harvesting and absorption, and wireless communications, among many other examples. This work aims to perform a systematic review of the literature to assess the potential of the Kresling origami springs as a structural component for engineering design keeping three objectives in mind: (i) facilitating future research by summarizing and categorizing the current literature, (ii) identifying the current shortcomings and voids, and (iii) proposing directions for future research to fill those voids.
Reference212 articles.
1. Self-organized origami;Mahadevan;Science,2005
2. Bioinspired spring origami;Faber;Science,2018
3. Origami-structures in nature: lessons in designing ‘smart’ materials;Kresling,2012
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献