Design and implementation of a jellyfish otolith-inspired MEMS vector hydrophone for low-frequency detection

Author:

Wang Renxin,Shen Wei,Zhang Wenjun,Song Jinlong,Li Nansong,Liu Mengran,Zhang Guojun,Xue Chenyang,Zhang Wendong

Abstract

AbstractDetecting low-frequency underwater acoustic signals can be a challenge for marine applications. Inspired by the notably strong response of the auditory organs of pectis jellyfish to ultralow frequencies, a kind of otolith-inspired vector hydrophone (OVH) is developed, enabled by hollow buoyant spheres atop cilia. Full parametric analysis is performed to optimize the cilium structure in order to balance the resonance frequency and sensitivity. After the structural parameters of the OVH are determined, the stress distributions of various vector hydrophones are simulated and analyzed. The shock resistance of the OVH is also investigated. Finally, the OVH is fabricated and calibrated. The receiving sensitivity of the OVH is measured to be as high as −202.1 dB@100 Hz (0 dB@1 V/μPa), and the average equivalent pressure sensitivity over the frequency range of interest of the OVH reaches −173.8 dB when the frequency ranges from 20 to 200 Hz. The 3 dB polar width of the directivity pattern for the OVH is measured as 87°. Moreover, the OVH is demonstrated to operate under 10 MPa hydrostatic pressure. These results show that the OVH is promising in low-frequency underwater acoustic detection.

Funder

National Natural Science Foundation of China

State Key Laboratory of Precision Measurement Technology and Instruments

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3