A monolithically integrated microcantilever biosensor based on partially depleted SOI CMOS technology

Author:

Liu Yi,Tian Yuan,Lin Cong,Miao Jiahao,Yu Xiaomei

Abstract

AbstractThis paper presents a monolithically integrated aptasensor composed of a piezoresistive microcantilever array and an on-chip signal processing circuit. Twelve microcantilevers, each of them embedded with a piezoresistor, form three sensors in a Wheatstone bridge configuration. The on-chip signal processing circuit consists of a multiplexer, a chopper instrumentation amplifier, a low-pass filter, a sigma-delta analog-to-digital converter, and a serial peripheral interface. Both the microcantilever array and the on-chip signal processing circuit were fabricated on the single-crystalline silicon device layer of a silicon-on-insulator (SOI) wafer with partially depleted (PD) CMOS technology followed by three micromachining processes. The integrated microcantilever sensor makes full use of the high gauge factor of single-crystalline silicon to achieve low parasitic, latch-up, and leakage current in the PD-SOI CMOS. A measured deflection sensitivity of 0.98 × 106 nm−1 and an output voltage fluctuation of less than 1 μV were obtained for the integrated microcantilever. A maximum gain of 134.97 and an input offset current of only 0.623 nA were acquired for the on-chip signal processing circuit. By functionalizing the measurement microcantilevers with a biotin-avidin system method, human IgG, abrin, and staphylococcus enterotoxin B (SEB) were detected at a limit of detection (LOD) of 48 pg/mL. Moreover, multichannel detection of the three integrated microcantilever aptasensors was also verified by detecting SEB. All these experimental results indicate that the design and process of monolithically integrated microcantilevers can meet the requirements of high-sensitivity detection of biomolecules.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3