Grating Bio-Microelectromechanical Platform Architecture for Multiple Biomarker Detection

Author:

Marvi Fahimeh12ORCID,Jafari Kian34ORCID,Sawan Mohamad12ORCID

Affiliation:

1. CenBRAIN Neurotech Center of Excellence, School of Engineering, Westlake University, Hangzhou 310030, China

2. Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China

3. Mechanical Engineering Department, Faculty of Engineering, Université de Sherbrooke (UdeS), 2500 Boul. de l’Université, Sherbrooke, QC J1L 2G7, Canada

4. Interdisciplinary Institute for Technological Innovation (3IT), Université de Sherbrooke (UdeS), Sherbrooke, QC J1K 2R1, Canada

Abstract

A label-free biosensor based on a tunable MEMS metamaterial structure is proposed in this paper. The adopted structure is a one-dimensional array of metamaterial gratings with movable and fixed fingers. The moving unit of the optical detection system is a component of the MEMS structure, driven by the surface stress effect. Thus, these suspended optical nanoribbons can be moved and change the grating pattern by the biological bonds that happened on the modified cantilever surface. Such structural variations lead to significant changes in the optical response of the metamaterial system under illuminating angled light and subsequently shift its resonance wavelength spectrum. As a result, the proposed biosensor shows appropriate analytical characteristics, including the mechanical sensitivity of Sm = 11.55 μm/Nm−1, the optical sensitivity of So = Δλ/Δd = 0.7 translated to So = Δλ/Δσ = 8.08 μm/Nm−1, and the quality factor of Q = 102.7. Also, considering the importance of multi-biomarker detection, a specific design of the proposed topology has been introduced as an array for identifying different biomolecules. Based on the conducted modeling and analyses, the presented device poses the capability of detecting multiple biomarkers of disease at very low concentrations with proper precision in fluidic environments, offering a suitable bio-platform for lab-on-chip structures.

Funder

Westlake University and Zhejiang Key R&D

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3