A novel early diagnostic framework for chronic diseases with class imbalance

Author:

Yuan Xiaohan,Chen Shuyu,Sun Chuan,Yuwen Lu

Abstract

AbstractChronic diseases are one of the most severe health issues in the world, due to their terrible clinical presentations such as long onset cycle, insidious symptoms, and various complications. Recently, machine learning has become a promising technique to assist the early diagnosis of chronic diseases. However, existing works ignore the problems of feature hiding and imbalanced class distribution in chronic disease datasets. In this paper, we present a universal and efficient diagnostic framework to alleviate the above two problems for diagnosing chronic diseases timely and accurately. Specifically, we first propose a network-limited polynomial neural network (NLPNN) algorithm to efficiently capture high-level features hidden in chronic disease datasets, which is data augmentation in terms of its feature space and can also avoid over-fitting. Then, to alleviate the class imbalance problem, we further propose an attention-empowered NLPNN algorithm to improve the diagnostic accuracy for sick cases, which is also data augmentation in terms of its sample space. We evaluate the proposed framework on nine public and two real chronic disease datasets (partly with class imbalance). Extensive experiment results demonstrate that the proposed diagnostic algorithms outperform state-of-the-art machine learning algorithms, and can achieve superior performances in terms of accuracy, recall, F1, and G_mean. The proposed framework can help to diagnose chronic diseases timely and accurately at an early stage.

Funder

National Natural Science Foundation of China

Graduate Research and Innovation Foundation of Chongqing

Chongqing Science and Technology Project

Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3