High-resolution fabrication of nanopatterns by multistep iterative miniaturization of hot-embossed prestressed polymer films and constrained shrinking

Author:

Sayed Shady,Selvaganapathy P. RaviORCID

Abstract

AbstractThe fabrication of nanostructures and nanopatterns is of crucial importance in microelectronics, nanofluidics, and the manufacture of biomedical devices and biosensors. However, the creation of nanopatterns by means of conventional nanofabrication techniques such as electron beam lithography is expensive and time-consuming. Here, we develop a multistep miniaturization approach using prestressed polymer films to generate nanopatterns from microscale patterns without the need of complex nanolithography methods. Prestressed polymer films have been used as a miniaturization technique to fabricate features with a smaller size than the initial imprinted features. However, the height of the imprinted features is significantly reduced after the thermal shrinking of the prestressed films due to the shape memory effect of the polymer, and as a result, the topographical features tend to disappear after shrinking. We have developed a miniaturization approach that controls the material flow and maintains the shrunken patterns by applying mechanical constraints during the shrinking process. The combination of hot embossing and constrained shrinking makes it possible to reduce the size of the initial imprinted features even to the nanoscale. The developed multistep miniaturization approach allows using the shrunken pattern as a master for a subsequent miniaturization cycle. Well-defined patterns as small as 100 nm are fabricated, showing a 10-fold reduction in size from the original master. The developed approach also allows the transfer of the shrunken polymeric patterns to a silicon substrate, which can be used as a functional substrate for many applications or directly as a master for nanoimprint lithography.

Funder

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Ontario Research Foundation

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3