A dynamical approach to generate chaos in a micromechanical resonator

Author:

Defoort MartialORCID,Rufer LiborORCID,Fesquet Laurent,Basrour SkandarORCID

Abstract

AbstractChaotic systems, presenting complex and nonreproducible dynamics, may be found in nature, from the interaction between planets to the evolution of weather, but can also be tailored using current technologies for advanced signal processing. However, the realization of chaotic signal generators remains challenging due to the involved dynamics of the underlying physics. In this paper, we experimentally and numerically present a disruptive approach to generate a chaotic signal from a micromechanical resonator. This technique overcomes the long-established complexity of controlling the buckling in micro/nanomechanical structures by modulating either the amplitude or the frequency of the driving force applied to the resonator in the nonlinear regime. The experimental characteristic parameters of the chaotic regime, namely, the Poincaré sections and Lyapunov exponents, are directly comparable to simulations for different configurations. These results confirm that this dynamical approach is transposable to any kind of micro/nanomechanical resonator, from accelerometers to microphones. We demonstrate a direct application exploiting the mixing properties of the chaotic regime by transforming an off-the-shelf microdiaphragm into a true random number generator conforming to the National Institute of Standards and Technology specifications. The versatility of this original method opens new paths to combine the unique properties of chaos with the exceptional sensitivity of microstructures, leading to emergent microsystems.

Funder

Agence Nationale de la Recherche

Fédération des Micro et NanoTechnologies

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3