True Random Number Generator Based on Chaotic Oscillation of a Tunable Double‐Well MEMS Resonator

Author:

Wu Junhui1ORCID,Sun Haoyang1ORCID,Zhou Guangya1ORCID

Affiliation:

1. Department of Mechanical Engineering National University of Singapore 9 Engineering Drive 1 Singapore 117575 Singapore

Abstract

AbstractChaotic systems have aroused interest across various scientific disciplines such as physics, biology, chemistry, and meteorology. The deterministic but unpredictable nature of a chaotic system is an ideal feature for random number generation. Microelectromechanical systems (MEMS) are a promising technology that effectively harnesses chaos, offering advantages such as a compact footprint, scalability, and low power consumption. This paper presents a true random number generator (TRNG) based on a double‐well MEMS resonator integrated with an actuator and position sensor. The potential energy landscape of the proposed MEMS resonator is actively tunable with a direct current voltage. Experimental demonstrations of tunable bistability and chaotic resonance are reported in this paper. A chaotic time sequence is generated through piezoresistive sensing of the position of the MEMS resonator once it is driven into the chaotic regime. Subsequently, the randomness of the bit sequence, achieved by applying the exclusive or function to a digital chaotic sequence and its delayed differential is confirmed to meet the National Institute of Standards and Technology specifications. Moreover, the throughput and energy efficiency of the proposed MEMS‐based TRNG can be adjusted from 50 kb s–1 and 0.44 pJ per bit at a low energy barrier to 167 kb s–1 and 6.74 pJ per bit at a high energy barrier by changing the MEMS device's potential well. The tunability of the proposed double‐well MEMS resonator not only offers continuous adjustments in the energy efficiency of TNRG but also unveils vast and diverse research opportunities in analog computing, encryption, and secure communications.

Funder

Ministry of Education - Singapore

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3