Abstract
AbstractThe development of mode-localized sensors based on amplitude output metrics has attracted increasing attention in recent years due to the potential of such sensors for high sensitivity and resolution. Mode-localization phenomena leverage the interaction between multiple coupled resonant modes to achieve enhanced performance, providing a promising solution to overcome the limitations of traditional sensing technologies. Amplitude noise plays a key role in determining the resolution of mode-localized sensors, as the output metric is derived from the measured AR (amplitude ratio) within the weakly coupled resonator system. However, the amplitude noise originating from the weakly coupled resonator’s closed-loop circuit has not yet been fully investigated. This paper presents a decouple-decomposition (DD) noise analysis model, which is applied to achieve high resolution in a mode-localized tilt sensor based on a weakly coupled resonator closed-loop circuit. The DD noise model separates the weakly coupled resonators using the decoupling method considering the nonlinearity of the resonators. By integrating the decoupled weakly coupled resonators, the model decomposes the weakly coupled resonator’s closed-loop circuit into distinct paths for amplitude and phase noise analyses. The DD noise model reveals noise effects at various circuit nodes and models the system noise in the closed-loop circuit of the weakly coupled resonators. MATLAB/Simulink simulations verify the model’s accuracy when compared to theoretical analysis. At the optimal operating point, the mode-localized tilt sensor achieves an input-referred instability of 3.91 × 10-4° and an input-referred AR of PSD of 2.01 × 10-4°⁄√Hz using the closed-loop noise model. This model is also applicable to other varieties of mode-localized sensors.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献