Abstract
AbstractThe dynamics of micro-/nanoelectromechanical systems (M/NEMS) curved beams have been thoroughly investigated in the literature, commonly for curved arch beams actuated with electrodes facing their concave surface. Except for few works on slacked carbon nanotubes, the literature lacks a deep understanding of the dynamics of slacked curved resonators, where the electrode is placed in front of the convex beam surface. This paper investigates the dynamics of slacked curved resonators as experiencing combined internal resonances. The curved slacked resonator is excited using an antisymmetric partial electrode while the electrostatic voltage load is driven to elevated excitations, which breaks the symmetry of the system and affects natural frequencies and corresponding mode shapes. The axial load is tuned to monitor the ratios between the natural frequencies of different vibration modes, which induces simultaneous 1:1 and 2:1 internal resonances between the first and second mode with the third. We observe the interaction of hardening and softening bending of the fundamental backbone curves triggering various patterns of the response scenario and the appearance of coexisting regions of irregular dynamics.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering
Reference42 articles.
1. Younis, M.I.: MEMS linear and nonlinear statics and dynamics. New York: Springer Science & Business Media (2011)
2. Asadi, K., Yu, J., Cho, H.: Nonlinear couplings and energy transfers in micro-and nano-mechanical resonators: intermodal coupling, internal resonance and synchronization. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376, 20170141 (2018)
3. Nayfeh, A.H.: Nonlinear interactions: analytical, computational, and experimental methods. New York: Wiley-Interscience (2000)
4. Asadi, K., Yeom, J., Cho, H.: Strong internal resonance in a nonlinear, asymmetric microbeam resonator. Microsyst Nanoeng. 7, 1–15 (2021)
5. Samanta, C., Yasasvi Gangavarapu, P.R., Naik, A.K.: Nonlinear mode coupling and internal resonances in MoS2 nanoelectromechanical system. Appl. Phys. Lett. 107, 173110 (2015)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献